
Fingerprints are the oldest and most extensively studied biomet-
ric technique of identification (1). The procedures for processing
latent fingerprint patterns are shown in Fig. 1. The figure represents
the systematic approaches used in the forensic science laboratory.
If the fingerprints from criminal scenes can be obviously verified,
we can obtain them directly by applying visible light and pho-
tographing. In the recognizing process (enhancement of patterns,
or elimination of “false alarms” so that a fingerprint pattern can be
searched in AFIS), instrumental methods (for example, UV ab-
sorption and reflection, the laser method, . . . etc.), physical meth-
ods (for example, powdering, small particle reagent, vacuum metal
deposition, . . . etc.), and chemical methods (ninhydrin and its ana-
logues, DFO, cyanoacrylate, . . . etc.) have been proposed to im-
prove pattern legibility. In the identifying process, a fingerprint
examiner can enhance contaminated (but not defective) fingerprint
patterns under guidelines provided by SWGFAST, SWGIT, and an
AFIS working group within the National Institute of Justice. After
these procedures, the pre-processed fingerprint patterns are identi-
fied by AFIS. To explain the process of “elimination for undesir-
able information,” we use Fig. 2 as an example. In Fig. 2a, we can
see many “false alarm” features being generated by AFIS. In Fig.
2b, the image after the process of elimination for undesirable in-
formation, we can see the “false alarm” features being eliminated.

The image processing techniques have been successfully ap-
plied in forensic science. For a fingerprint pattern image of poor

clarity, image enhancement methods have been proposed to im-
prove the legibility of fingerprints (2–4). These enhancement
methods can be classified as spatial (image) domain and fre-
quency domain methods. Spatial domain techniques (such as So-
bel filters, Pratt filters, . . . etc.) are used to remove additive noise
from fingerprint images. For frequency domain methods, digital
images can be represented as a collection of different frequency
components (energy spectra). The transform used to perform con-
version from the spatial domain to the frequency domain is
known as the discrete Fourier transform (DFT). Enhancement can
be achieved by adjusting particular frequency components that
are with the interested information. Recently, the wavelet trans-
form (WT) is used to reduce the noise and enhance the informa-
tion of contaminated images. WT belongs to the so-called the
time-scale domain method (combination of spatial and fre-
quency). These methods (spatial, frequency, and time-scale do-
main) can improve the visual quality of fingerprint images.

The AM-FM reaction-diffusion method has been used to com-
plete defective and occluded oriented image textures (5). The
method uses AM-FM models to characterize image textures (i.e.,
estimation of texture parameters). With the estimated parameters,
we can use the AM-FM model to represent image textures and re-
construct them via the reaction and diffusion process.

In this paper, we propose a novel digital image restoration tech-
nique based on the AM-FM reaction-diffusion method to restore
defective or contaminated fingerprint patterns. This method
shows its potential application to fingerprint pattern enhancement
in the recognizing process (but not for the identifying process).
Synthetic and real images are used to show the capability of
the proposed method. The results of enhancing fingerprint pat-
terns by the manual process and our method are evaluated and
compared.
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Methods

In order to analyze universal image statistics, Zhu and Mumford
proposed a new class of Gibbs distributions of the following
form (6):

p(I; �; S) � �
Z
1

� e�U(I;�;S) (1)

U(I; �; S) � ∑
K

��1
∑
(x,y)

�(�)((F(�)
* I)(x, y)) (2)

where I is an image, Z is a normalization factor, S � {F(1), F(2), . . .,
F(K)} is a set of linear filters, and � � {�(1)(), �(2)(), . . . �(K)()} is a
set of potential functions. They argue that random samples from
these models can duplicate very general classes of textures for an
appropriate choice of a set of filters S. The potential functions � �
{�(1)(), �(2)(), . . . �(K)()} can be classified into two categories: dif-
fusion process terms and reaction process terms. The diffusion pro-

cess produces denoising effects, while the reaction process forms
patterns and enhances image features. The typical potential func-
tions lead to image smoothing via anisotropic diffusion. Inverted
potential functions produce pattern formation or reaction. This kind
of reaction-diffusion process has been employed to produce ori-
ented patterns such as leopard blobs and zebra stripe (7,8).

From Ref 5, the reaction-diffusion mechanism used for texture
reconstruction can be described by the following equation:

�
�
�
I
t
� � �DD 	 �RR (3)

where I is an image, D is the diffusion term, R is the reaction term,
�D is the rate of diffusion, and �R is the rate of reaction. For an im-
age I(X), where X � (x, y) is the location, we can rewrite Eq 3 as

� �D(X) D(X) 	 �R(X) R(X) (4)

where It (X) is the intensity of location X at iteration t. �D(X), �R(X),
D(X) and R(X) are location-variant (location dependent). In the
digital (discrete) image case, Eq 4 can be implemented by

It	1(X) ← It(X) 	 �D(X)D(X) 	 �R(X)R(X) (5)

where It (X) is the intensity of location X at iteration t. For the per-
fect regions (with complete patterns) of the image, the initial image
intensities on I0 (X) are equal to those on the input image I(X).
From Eqs 5 and 6, “seed” the reaction-diffusion process with uni-
form noises or noises that are distributed identically to the sur-
rounding region. Unfortunately, this noise-based mode is not suit-
able for fingerprint patterns, since fingerprint patterns are not
random noises. In our method, we “seed” the reaction-diffusion
process with the information of perfect image regions.

Based on Eq 5, we can define the diffusion and reaction pro-
cesses. Diffusion and reaction processes have conflicting objec-
tives (5). The goal of the diffusion process is to smooth image pat-
terns and eliminate noises, while the goal of the reaction process is
to form pattern edge contours.

Diffusion Process

We define the diffusion term D(X) of Eq 5. An anisotropic dif-
fusion equation is introduced as

�
�I

�
t(
t
X)
� � div{c(X, t)
It (X)} (6)

where X � (x, y) is the location on an image, I0(X) is the input im-
age, 
It (X) is the image gradient, c(X, t) is the diffusion coefficient,
and div[�] is the divergence operator and defined as

div(V�) � 
xP 	 
yQ (7)

For a vector V� � (P, Q), 
xP is the gradient along the x axis; 
yQ
is the gradient along the y axis (9,10). The equivalent discrete rep-
resentation of Eq 6 for substitution in Eq 5 (i.e. D(X)) is given by

D(X) � ∑
�

d�1 
cd (X)
Id(X) (8)

where cd (X) is the diffusion coefficient, � is the number of direc-
tions in which diffusion is computed, and 
Id (X) is the directional
gradient in direction d at location X (10). For example, � � 4, 
Id

(X) is the directional gradient with respect to the “western,”
“eastern,” “northern,” and “southern” neighbors. If X � (x,y) and

�It(X)
�

�t

FIG. 1—The procedures for processing latent finger-
print patterns.

FIG. 2—An example of “elimination for undesirable information” (see
Fig. 1); the symbols show the feature positions detected by AFIS: (a) the
original image; we can see many “false alarm” features being generated;
(b) the image after the process of elimination for undesirable information;
we can see the “false alarm” features being eliminated.

A B



d � 1, 
I1 (x) � I(x � h1, y) � I(x, y), the parameter h1 defines the
sampling interval length.

The most important step to design the diffusion process is the
proper selection of the diffusion coefficient cd (X). From Eq 10, we
can define the diffusion coefficient as

cd (X) � exp����
Sd

k
(X)
��2� (9)

and

Sd � (I � B) � B (10)

where k is a scaling constant, B is a structuring element of size m 
m, I � B is the morphological opening of I by B, and I � B is the mor-
phological closing of I by B (11).

The selection of the diffusion coefficient, cd (X), is the key point
in the diffusion process. The anisotropic diffusion is used to inhibit
smoothing at image edges, and it is also used to develop the edge
detection technique. Figure 3 shows an example of edge detection
with the morphological anisotropic diffusion method, and Fig. 4
shows that the morphological anisotropic diffusion method can be
used to eliminate noise and preserve edges.

In this paper, we use the discrete version of the anisotropic dif-
fusion (12). From Eqs 5 and 8, the image intensities are updated
according to:

It	1(X) ← It(X) 	 �D(X) D(X) (11)

where �D(X) is the rate of diffusion, �D(X) �1⁄2 is for the one-
dimensional D(X), and �D(X) �1⁄4 is for the two-dimensional case
(four diffusion directions).
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FIG. 3—Edge detection by the morphological anisotropic diffusion
method: (a) a fingerprint image; (b) the result of edge detection.

FIG. 4—An example of eliminating noises and preserving edges with the morphological anisotropic diffusion method: (a) an image corrupted with salt-
pepper noises; (b) after twelve iterations of morphology anisotropic diffusion with Eq 9; k � 128; (c) after 24 iterations of morphology anisotropic diffu-
sion; k �128.
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Reaction Process

In this subsection, we define the reaction term R(X) of Eq 5. The
reaction process encourages formation of patterns of directionality.
To produce patterns that correspond to oriented texture features,
the reaction term is given by Eqs 5 and 6.

R(X) � Gx � [�(GX * I)] (12)

where Gx is the Gabor filter (Eq 14), which is designed to produce
the specific texture orientation at position X. The operator “�”
is the correlation operator and “*” is the convolution operator (11).
The function �(�) weights the contribution of the Gabor filter, and
it is defined as (Eq 6)

�(�) � ��1 � �
1	(|

1
�|/k)2�� (13)

where k is a scaling constant. In the case of the fingerprint pattern
generation, we can set k according to the desired contrast within the
fingerprint. For an 8-bit gray-level-valued image, we can set k �
255.

The Gabor filter (Fig. 5 shows an example) is applied exten-
sively in image processing, such as pattern segmentation, texture
classification, and image recognition. The Gabor filter G is given
by a cosine function and a two-dimensional Gaussian function
g�(x, y):

G � cos[(2�/M)(ux	vy)] � g� (x, y) (14)

where M is a constant used to control the cycle of patterns, u and v
are the horizontal and vertical frequency, and � is the standard de-
viation of the Gaussian function g� (x, y). In fingerprint pattern, one
cycle includes a ridge and its neighbor valley. The Gabor parame-
ters (u, v) are automatically determined by the AM-FM model (we
will discuss it later).

With the reaction process, we can create some “natural” image
patterns. Using a pepper noise image as the initial image and with
Eq 12 we can obtain “zebra stripes” patterns (Fig. 6a). If we replace
the Gabor filter with the Gaussian filter, we can obtain “blood cell”
patterns (Fig. 6b).

Rate of Reaction-Diffusion

The rates, �R(X) and �D(X), of Eq 5 are important factors affect-
ing the implementation of reaction-diffusion for texture restora-
tion. We will discuss how to determine �R(X) and �D(X) in this sub-
section.

Let � denote the domain of an image, U � � denotes the region
with complete patterns in the image, and B � � denotes the region
with defective patterns in the image. Since the objectives of pro-
cessing within the complete region U and the defective region B are
different, we let �R(X) and �D(X) vary with location X. In order to
provide simultaneous enhancement and smoothness between U and
B, we process the diffusion within the entire complete region U.
The reaction operator is also performed on the boundaries between
U and B to guarantee pattern matching within the boundary region.

The rate of reaction (�R(X)) is determined by the maximum num-
ber of iterations, which is determined by

�R(X) � (15)

where N2 � the number of pixels in the localized area W, and k is
a scaling constant (same as in Eq 13).

∑
(x,y)�W

I(x,y)

��
N2 � k

For the rate of diffusion (�D (X)), if X � B, we let

�D(X) � 1⁄4 (16)

for stability; if X � U, we let

�D(X) � �
1
4

� � (17)

where � is a constant. In this paper, we use � � 0.1. � is determined
by two requirements: (1) the generated patterns need to fit the ex-
isting boundaries between U and B, (2) distortion made in region U
must be minimized.

Appropriate reaction filters for reconstructing the texture pat-
terns are the key points to the success of the reaction-diffusion
model. In this paper, we utilize an AM-FM model to derive the fil-
ter parameters for the defective regions in the image.

AM-FM Model

The AM-FM model has been used to model textured images
(13,14) and to analyze human speech signals (15–18). With joint
amplitude-frequency modulated AM-FM components, we can ob-
tain the characteristics of a texture image and duplicate the image.
Each AM-FM component is composed of two functions—AM and
FM function. The AM function may be interpreted as the instanta-
neous intensity variation, while the FM function denotes the vec-
tor-valued derivative of the instantaneous phase and describes the
local texture orientation.

FIG. 5—A 3-D mesh plot of the Gabor filter.

FIG. 6—Patterns produced by the reaction process: (a) a “zebra
stripes” image; (b) a “blood cells” image.
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For a given image, the demodulation process deals with the
computation of the AM and FM functions. The AM and FM func-
tions provide an extensive description of the local texture struc-
ture. Those functions can be used to texture analysis (19,20), tex-
ture segmentation, classification, and reconstructing (5,21). Since
the AM-FM functions are with complex models, we need a com-
plex-valued transform when applying AM-FM functions to real-
valued signals (e.g., images). This is why we need the Hilbert
transform.

Hilbert Transform

Hilbert transform is used to define the complex-valued analytic
image associated with a real-valued image. The extension of the
transformed image is called the analytic image (22). The properties
of Hilbert transform can be reviewed in Refs 22–25.

Gabor (23) defined the amplitude and frequency of a one-
dimensional real-valued signal s(x) in terms of a complex-valued
signal, called the analytic signal z(x), which is defined by z(x) �
s(x) 	 jc(x), where

c(x) � H[s(x)] � s(x) * �
�
1
x
� � �

�
1

� �
R

�
x
s
�
(�)

�
� d� (18)

is the Hilbert transform H[�] of the original real-valued signal s(x).
For a N  M real-valued image f(x, y), its analytic image (z(x, y))

is given by z(x, y) � f(x, y) 	 jg(x, y), where g(x, y) is the 2-D
Hilbert transform of f(x, y). We can also write the analytic image in
the frequency domain format, Z(u, v) � F(u, v) 	 jG(u, v), where
Z(u, v), F(u, v), and G(u, v) are the discrete Fourier transforms of
z(x, y), f(x, y), and g(x, y), respectively.

z(x, y) can be computed by the following straightforward proce-
dure. Since G(u, v) � H(u, v) � F(u, v) (Eq 19), where

We can obtain Z(u, v) � F(u, v) 	 jG(u, v) easily. z(x, y) can be
obtained by taking the inverse DFT of Z(u, v). Figure 7 shows a
“diamond image,” its Hilbert transform, and estimated AM-FM
functions.

Restoration of the Oriented Texture

A signal f(k) can be modeled as a single AM-FM function,

f(k) � a(k) cos[�(k)] � Re{a(k) exp[ j�(k)]} (20)

where a(k) denotes the AM function and �(k) denotes the FM func-
tion. However, single-component modulation models are rarely ap-
propriate for modeling real-world images. Suppose that f(n1, n2) is
an �  � image, where n1 and n2 are integer, 0 � n1 � N and 0 �

(19)

u � 1,2,…,�
N
2

� � 1

u � �
N
2

� 	 1,�
N
2

� 	 1,…,N � 1

u � 0, v � 1,2,…,�
M
2
� � 1

u � �
N
2

�, v � 1,2,…,�
M
2
� � 1

u � 0, v � �
M
2
� 	 1,�

M
2
� 	 2,…,M � 1

u � �
N
2

�, v � �
M
2
� 	 1,�

M
2
�,…M �1

otherwise

�j,

j,
�j,
�j,

j,
j,
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H(u, v) �
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FIG. 7—An AM-FM synthetic image example: (a) the synthetic diamond image; (b) the Hilbert transform of (a); (c) the AM function a(x,y) estimated by
Eq 24; (d) the FM function (frequency vectors) estimated by using Eqs 25–28, each arrow (vector) is in the direction arctan[|v(x, y)|/|u(x, y)|].
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n2 � M. If f(n1, n2) takes real floating point values, we can model
the image according to

f(n1, n2) � a(n1, n2) cos[�(n1, n2)] (21)

We also assume that f(n1, n2) contains the samples of a continu-
ous image,

fc(n1, n2) � ac(n1, n2) cos[�c(n1, n2)] (22)


[�c(n1, n2)] is defined as the instantaneous frequency of fc(n1, n2).
By definition, 
[�c(n1, n2)] is the FM function of fc(n1, n2) in Eq
22. This quantity is a vector with components ��c(n1, n2)/�n1 and
��c(n1, n2)/�n2 , which are referred to, respectively, as the horizon-
tal and vertical instantaneous frequencies. In an image, the single-
component demodulation problem is to estimate AM function
(â(n1, n2)) and FM function (�̂(n1, n2)) such that f(n1, n2) 	 â(n1,
n2) cos[�̂(n1, n2)]. The first procedure is to demodulate f(n1, n2) by
a well-defined algorithm that uses the real values of the image to
calculate a complex extension z(n1, n2) � f(n1, n2) 	 jg(n1, n2). The
second procedure is to estimate AM and FM functions from z(n1,
n2). These two procedures are described in the next subsection.

Demodulation by Complex Extension

We describe a technique that estimates the AM and FM func-
tions of a real-valued single-component image by computing a
complex-valued extension of the image and demodulating the com-
plex image (5). The particular complex extension is called the an-
alytic image. It is very advantageous to write complex signals

z(x, y) � I(x, y) 	 jg(x, y)

� a(x, y)e j�(x, y)
(23)

where z(x, y) is constructed by adding an imaginary part g(x, y) to the
real image I(x, y), and g(x, y) is the Hilbert transform of I(x, y). a(x,
y) denotes the AM function and �(x, y) denotes the FM function. In
practice, the estimated AM function (Eq 24) and FM function (Eqs
25–28) can be obtained by using the following algorithms (26):

a(x, y) � |z(x, y)| (24)

|u(x, y)| � arccos� � (25)

sgn u(x, y) � sgn arcsin� � (26)

arccos� � (27)

arcsin� �(28)

A synthetic image example is shown in Fig. 7. Figure 7a is the
synthetic diamond image, Fig. 7b is the Hilbert transform of the di-
amond image, Fig. 7c is the AM function a(x, y) estimated by Eq
24, and Fig. 7d is the FM function (frequency vectors) estimated by
using Eqs 25–28. In Fig. 7d, each arrow (vector) is in the direction
[ v(x, y) / u (x, y) ].

The Parameters of Component Selection

z(x, y 	 1) � z(x, y�1)
���

2 jz(x, y)

z(x, y 	 1) 	 z(x, y � 1)
���

2z(x, y)

z(x 	 1, y ) � z(x�1, y)
���

2z(x, y)

z(x 	 1, y) 	 z(x � 1, y)
���

2z(x, y)

The component parameter selection technique is used for esti-
mation of the AM and FM functions. In Eqs 12 and 14, the Gabor
parameters (u, v) play important roles in the reaction term. They af-
fect the orientation and cycle of produced patterns. In Eqs 25–28,
the FM function is formed by u(x, y) and v(x, y). The functions u(x,
y) and v(x, y) are the horizontal and vertical instantaneous frequen-
cies of z(x, y), respectively. Here, we analyze the FM function and
get the useful parameters for the reaction term.

Figure 8a is an original fingerprint image with similar oriented
patterns, and Fig. 8b is the preprocessed image of Fig. 8a. We will
use this image sample to show the capability of our method. Figure
9a is the computed FM function of Fig. 8b; it is estimated by Eqs
25–28. The direction of each arrow (frequency vector) can be
obtained by [ v(x, y) / u (x, y) ].

With the computed FM function (as Fig. 9a), we can discrimi-
nate between the defective regions and the (relative) complete
pattern regions automatically. First, we compute the magnitude of

u(x, y) and v(x, y), 
[�u�(x�,�y)��2�	� �v(�x,� y�)�2]�, at each pixel. Sec-
ond, we use a window (each pixel as the window center) to com-
pute the local mean value of the neighboring pixels’ magnitudes.
The window is moving pixel by pixel. After the process, we can re-

FIG. 8—(a) An original fingerprint image with similar oriented
patterns; (b) the preprocessed image of (a).
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FIG. 9—(a) The estimated FM function (frequency vectors) of Fig. 8b; (b) the local means of FM function; (c) the result image of Fig. 8b being super-
imposed on Fig. 9b. The region surrounded by the white contour is the (relative) complete pattern region.
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place each pixel’s gray level values with its neighboring pixel’s lo-
cal mean value. Third, we show the local mean values as an image
(as Fig. 9b). Finally, we let Fig. 8b be superimposed on Fig. 9b and
show the image as Fig. 9c. In Fig. 9c, the region surrounded by the
white contour is the (relative) complete pattern region.

Experimental Results

Applications to the Surface Textures of Skid-Proof Brick

The processing flowchart of the proposed fingerprint restoration
is shown in Fig. 10. In Fig. 11, we use this method to restore the
surface textures of skid-proof brick. Figure 11a is an original
image, Fig. 11b is the synthetic image by removing the center in-
formation, and Fig. 11c is the restored result by the proposed
method. From Fig. 11c, we can see the restored image is similar to
the original one.

Applications to Defective Fingerprint Image Patterns

We apply our method to restore the defective image in Fig. 8b.
After three iterative processes (i.e., t � 3), the discontinuous tex-
tures have been connected and restructured (see Fig. 12a). Figure
12b is the restored image after five iterative processes (i.e., t � 5).
If the defective fingerprint image is superimposed on a line (e.g.,
form lines), the image is still restored pretty well. Figure 13a is a

FIG. 10—The processing flowchart of the proposed fingerprint restora-
tion method.

FIG. 11—The surface textures of skid-proof brick examples: (a) an orig-
inal image; (b) the synthetic image by removing its center information; (c)
the restored result by the proposed method. The restored image is similar
to the original one.

defective fingerprint image with a black line (contaminated) over
it, and Fig. 13b is the restored result with our method.

The Comparison of Synthetic Completing Fingerprints

Figure 14a is an original perfect fingerprint image (the symbols
show the feature positions detected by AFIS). Figure 14b is the
same image processed by the bad impressing process. We can see
some “false alarm” features being generated and some features
being missed. Figure 14c is the restored image by the proposed
method. From the experimental results, we can see our method can
reduce the extraction of “false alarm” features.

The restoration results by fingerprint examiners and our method
are shown in Fig. 15. Figure 15a is an original perfect fingerprint
image. Figure 15b is the same image processed by the bad im-
pressing process. Figure 15c and Fig. 15d are the restored images
by our method and fingerprint examiners, respectively. From the
experimental results, we can see the feature extraction results are
similar to each other.

Discussion

In this paper, we propose a novel digital image restoration tech-
nique based on the AM-FM reaction-diffusion method to restore
defective or contaminated fingerprint patterns. We compute a com-
plex-valued extension of processed fingerprint image with Hilbert
Transform and estimate the parameters of the AM-FM functions
demodulated from the complex-valued extension. In the reaction-
diffusion process, the estimated parameters are used to reconstruct
fingerprint patterns. Our method shows its potential application to
fingerprint pattern enhancement in the recognizing process (but not
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FIG. 12—The restored result images: (a) after three iterative processes
(i.e., ), the discontinuous textures have been connected and restructured; 
(b) the restored image after five iterative processes (i.e., t � 5).

FIG. 13—If the defective fingerprint image is superimposed on a line
(e.g., form lines), the image is still restored pretty well with our method.
(a) A defective fingerprint image with a black line over it; (b) the restored
result.

A

B

A

B



10 JOURNAL OF FORENSIC SCIENCES

FIG. 14—A defective fingerprint image restored by the proposed method; the symbols show the feature positions detected by AFIS. (a) The original per-
fect fingerprint image; (b) the same fingerprint image with the bad impressing process, we can see some “false alarm” features being generated and some
features being missed; (c) the restored image by the proposed method.
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FIG. 15—(a) An original perfect fingerprint image; (b) the same image with the bad impressing process; (c) and (d) are the restored images by our
method and fingerprint examiners, respectively. From the experimental results, we can see the feature extraction results are similar to each other.
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for the identifying process). It can be applied to improving the
legibility of input image of automated systems (such as AFIS).
Synthetic and real images are used to show the capability of the
proposed method. The results of enhancing fingerprint patterns by
the manual process and our method are evaluated and compared.

Since our method produce patterns that correspond to “oriented”
texture features, it cannot create any specific patterns that are
different from those features. When applying the method to finger-
print pattern restoration, one must notice that the size of the poor
clarity region cannot be of an order greater than that of the finger-
print ridges; otherwise, one may generate “false alarm features.”
For example, in Fig. 11, the restored image is “similar” to the
original image, but it is not identical to the original image.
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